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ABSTRACT

Several hugely successful robotic missions have been
performed in planetary and lunar exploration scenarios.
While mission goals concerning travelled distance and
robot lifetime were greatly exceeded, the utilized degree
of autonomy in these systems was chosen to be very low.
With the increasing push towards especially the moon in
recent years and the associated need for greater long-term
numbers of active robots for exploration, prospecting,
and other tasks, though, improving their autonomous ca-
pabilities becomes more and more relevant. Additionally,
with various new rovers and potentially legged robots
from different commercial and scientific providers poten-
tially being used together in these medium to long-term
missions, efficient control of these heterogeneous multi-
robot teams is needed. Existing control approaches used
in many terrestrial multi-robot applications, such as in lo-
gistics, cannot easily be used in these situations, due to
the difficult communication restrictions and the high de-
gree of uncertainty.

We developed a scalable autonomy approach to control
teams of arbitrary robots on various levels of autonomy,
from fully autonomous missions to assisted teleoperation.
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In the autonomous mode, robots independently sched-
ule and execute missions using a shared collection of
tasks. By communicating the tasks they plan to execute
and the associated expected utilities, efficient coopera-
tion between the robots can be performed without the
need of a centralized planner. This increases redundancy,
allows for autonomous operation when no communica-
tion with a centralized mission control is possible and al-
lows for more dynamic behaviors, as robots can easily
adjust their plans when their internal or external situa-
tion undergoes unexpected changes. By considering their
functional health and additional resources such as battery
charge, the task allocation in the team can also dynami-
cally adapt to possible damages.

The developed system was, with some changes, tested
in three realistic scenarios. As part of the intelliRISK2
project we performed a planetary exploration analogue in
the Tabernas desert, using a team of three different walk-
ing robots. Additionally, we utilized it in the ESA ES-
RIC Space Resources Challenge as part of a realistic lu-
nar exploration and resource prospecting scenario, which
we were able to win primarily due to our high degree of
autonomy. Finally, we tested it in a nuclear power plant
emergency scenario.

We will, thus, also present how this system performed in
these realistic scenarios, what possible challenges exist in
further increasing the technological readiness level of the



Figure 1. Robots ANYmal, Spot and Husky in a lunar
analogue area. At the beginning of the mission, taken
as part of the ESA ESRIC Space Resources Challenge,
the robots get ready for initial exploration, mapping and
resource prospecting.

architecture and what future steps we will take to further
improve this control approach.
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1. INTRODUCTION

The pursuit of a deeper comprehension of the natural
world has extended the boundaries of human exploration,
including domains like space, the deep sea and contami-
nated regions. Through the utilization of robots, we can
explore areas that are inaccessible, hazardous, or arduous
for humans to reach.

Using robots in these situations is difficult, especially as
the costs of these missions are very high and failure thus
cannot be risked. One way to increase efficiency and re-
dundancy of robotic missions is the usage of robot teams.
Operating robots in teams, though, comes with additional
challenges: Actions have to be coordinated, data fused
and the insights gained by intelligent autonomous agents
shared.

On the other hand, once robots are able to efficiently
share tasks and cooperate, even more complex interac-
tions with unfamiliar environments are possible. Addi-
tionally, a distributed approach can enhance autonomy
of individual robots, allowing a higher level of decision
making of the systems while guaranteeing redundancy
and robustness.

Significant work in multi robot systems has been per-
formed over the last years. Exploration of unknown envi-
ronments can be defined as a utility maximization prob-
lem, defining distance to a goal as cost and unknown area
around them as gain, considering active tasks of other
robots [1] [2].

Other approaches [3] [4] use a response threshold model,

in which every robot individually has a specific thresh-
olds for each available task. These create a swarm-like
behavior without any communication between the robots.

For dealing with the problem of communication under
suboptimal network conditions, [6] presents a model
for automatic data synchronization between robots when
communication is possible.

Currently, heterogeneous teams usually have very spe-
cific tasks defined and assigned to robots offline with lit-
tle to no online task distribution. Especially if the team
changes throughout the mission, there is little or no pos-
sible adaptivity. Full multi robot planning often requires
full knowledge of every bit of relevant information at a
centralized planner, which is problematic with more and
more complex robotic platforms and is worsened in low
connectivity scenarios.

We present our experiences using efficient cooperation
of heterogeneous robots with a high degree of individual
autonomy. It allows complex systems without detailed
knowledge of each other to work together. Additionally,
it still ensures efficient distribution of tasks by consider-
ing both future tasks and best tasks for other robots in
planning. Finally, it is adaptive towards changes in the
team, such as loss of or damage to a robot.

We accomplish this, using a dynamic, decentralized stor-
age and management of tasks. Each robot determines
an optimal task execution sequence individually, using a
utility comparison and future robot state estimation. This
utility considers the costs calculated by path planning, the
robot-specific capabilities and future tasks. Additional
relevant information is also considered, such as the bat-
tery status and the robot’s health.

This paper is structured as follows: In section II, we dis-
cuss the architecture, specifically the planning systems
and algorithm used. Section III presents our experiences
in 3 realistic scenarios. Finally, section IV summarizes
the results and planned future work.

2. APPROACH

By employing a multi-stage planning and an utility based
task evaluation and approach, we establish a robust,
autonomous, and decentralized task allocation system
across multiple robots. We store all task decentralized
on each robot. Furthermore, we design a communica-
tion node which runs on each robot and shares relevant
task information. The communication nodes continu-
ously synchronize the databases and resolving conflicts
that may arise due to communication failures, such as
when two robots have claimed the same task.

We examine a collaborative team consisting of various
walking robots with a limited inter-robot communication
and no comprehensive understanding of the capabilities
and real-time states of other robots within the team. We



Figure 2. Overview of the system architecture. Each robot has its own task handler instance, which synchronize when
possible. Based on this, each robot performs individual utility calculation and state estimation, which in turn is used for
task selection and planning.

further consider a path planner that generates paths for
given poses and a continuous generation of new tasks.

2.1. Task selection

We are interested in a long-term efficient task alloca-
tion without a direct communication. Given the latest
received task list A, each robot task planer continually
computes the desired order of the most suitable tasks for
its instance.

Let Ui be a list of the utilities of the other robots, and
u(i,s) be one’s own utility regarding task i and robot state
s. We define the selection optimality as oi = ui−max(Ui).
Let O be the list of selection optimality values for each
task; we choose the task with the highest selection opti-
mality as the next task.

Calculating the utility can be computationally intensive,
as it e.g. includes a detailed path planning. To reduce the
calculation, we utilize a rapid estimation of the maximal
utility to filter irrelevant tasks. This significantly reduces
the selection time. Our selection approach improves the
overall exploration quality by enhancing the distribution
of exploration areas among the robots.

While the selection of one optimal task may provide a
short-term exploration gain it is not necessarily the best

long-term task-allocation strategy. To address this subse-
quent tasks are determined based on an estimation of the
state of the robot s after the execution of the selected task.
Next, the utilities are recalculated based on this estimated
state while accounting for uncertainties. The next task is
then chosen using the estimated robot state and the newly
computed utilities, as former described. As a result, tasks
that are located close to each other are generally more
valuable due to their proximity, but they might be less
interesting for other robots.

Algorithm 1 Task Planning Algorithm
Plan← empty list
s← CurrentState
while PlanningDepth not reached do

for i in Tasks do
u(i,s)← ∑w ju j // Utility calculation

end for
Taskselected← Task withmax(uo−max(U))
Insert Taskselected into Plan
s← Estimated state after execution of Taskselected

end while
for n in Plan do

Communicate(un)
end for



2.2. Utility calculation

Given a state of the robot s and a task i, we want to cal-
culate the utility ui,s of executing the task. We define the
utility as a sum of weighted utility features

ui, j = ∑w j ∗u j

for task j. We use the weights to individualize the behav-
ior of the various robots. We define the following utility
features:

Type We categorize tasks into different types. For in-
stance, in an exploration task, the robot moves to
the task’s designated position, whereas in a manip-
ulation task, it has to interact with the environment
at the specified position. The prioritization is chosen
individually for each robot. Thus, we define the type
feature

utype = c(type)

in which c is a type-specific constant.

Path length In order for robots to prioritize nearby tasks,
the path planner calculates a path from the robot’s
position to the task. We define the path length fea-
ture as the negation of the path length:

upath =−
m−1

∑
n=0
|−−→pn+1−−→pn|

in which m is the number of positions in the path.

Battery level In continuous exploration missions, robots
must regularly return to their base station to recharge
their batteries. By defining the battery level feature

−ubattery = (bcos
π

2
)5 ∗ |−−→pbase−−−−→probot|

, in which b ∈ [0,1] is the battery level and p the
position, we ensure that tasks near the base station
are prioritized as the battery level decreases. This
effectively utilizes the impending return trip. This
feature is negligibly small at a high charge level.

Health During the exploration of unknown areas, robots
are exposed to high risks, and operational robots
should prioritize tasks over those that are damaged.
Therefore, the robot’s health condition is estimated
using data-based techniques. The health value is di-
rectly employed as a utility feature

uhealth = h

. Consequently, the robot evaluates its utility lower
when its own health is low, for instance due to dam-
age or physical impairment.

Additionally, we estimate the maximum achievable util-
ity for a given robot state and task. By utilizing straight-
forward metrics, the maximum utility estimation is con-
siderably faster compared to the full utility calculation.
For instance, this estimation incorporates Euclidean dis-
tance instead of planning a path to the task.

2.3. State estimation

The robot’s state comprises its pose, a health value, and
battery status. In the most basic implementation utilized
in most of our field work, we only roughly estimate the
robots future state. The position of the robot after task
execution is estimated to be at the intended pose to com-
plete the task successfully. The battery status is estimated
by multiplying the path length with the average battery
consumption per distance. The average battery consump-
tion is continually adjusted to ensure correct estimation,
as this is the most important estimate state variable. For
health estimation, in the basic case we can assume static
health or utilize available risk estimations for terrain pre-
sented in other work.

Additionally, we have implemented a more complex,
context sensitive state estimation which closely integrates
the terrain the robot will walk over. This utilizes a novel
transformer based prediction model, but at the time of our
field missions it could not be tested robustly enough to in-
tegrate into the full control stack and we will present it in
more detail in upcoming work.

2.4. Conflict resolution

Each robot has a communication node that transmits
changes to the task database, such as when the robot
claims a task. The ROS 2 middleware ensures that the
data is distributed to all interested subscribers. In a decen-
tralized task distribution, each robot autonomously makes
decisions without synchronous communication. If multi-
ple robots make changes to the tasks in parallel without
considering the modifications made by other robots, con-
flict situations can arise, especially during network fail-
ures. Therefore, the communication node of each robot
synchronizes incoming messages with its own state of
the database, detects conflicts, and resolves them. For
instance, if two robots select the same task during a net-
work outage, the communication nodes will identify this
conflict once communication is reestablished between the
two robots. The robot with the lower task utility will halt
the execution of the task, while the robot with the higher
utility will disregard the other robot’s execution and con-
tinue its own.

2.5. Adaptivity to robot damage/loss

The system is designed such that damages or failures of
robots do not threaten the exploration mission. Internal
and (external) health estimations evaluate a robot’s health
status and the risk of exploring into specific areas. In the
event of damage, the robots health and, subsequently, its
utility for tasks are reduced, which automatically causes
other robots within the team to assume these tasks.

The task allocation plan increases the likelihood of cohe-
sive tasks being executed by the same robot. However,



Figure 3. Example of a merged utility calculation for different tasks and utility types. Total utility is calculated as a
weighted sum of the path-based cost (top left), the type-specific gain of performing the task (top right), the estimated
battery loss (bottom left) and the estimated robot health (bottom right)

tasks are not preemptively reserved. Should a robot ex-
perience a complete failure, its tasks will be redistributed
among other functioning robots.

3. RESULTS AND EXPERIMENTS

The architecture was developed for use in realistic scenar-
ios for teams of autonomous robots. As it is intended to
be used in arbitrary mission types, with different robots
and to accomplish varying goals, we evaluated in 3 use
cases.

Initially, we developed and utilized it in the ESA ESRIC
Space Resources Challenge, a lunar exploration and re-
source prospecting scenario. In a mars exploration ana-
logue mission as part of the intelliRISK2 project, we gen-
erally tested the approach and evaluated several additions
such as risk-aware planning and behavior adaptation sys-
tems, which are beyond the scope of this paper. Finally,
as part of the European Robotics Hackathon we adapted
it to a nuclear power plant emergency scenario, includ-
ing manipulation of valves and buttons and zones of no
network connectivity.

3.1. ESA ESRIC Space Resources Challenge

The ESA ESRIC Space Resources Challenge was a re-
alistic lunar exploration and prospecting analogue mis-
sion scenario. Given 4 hours of time, an area of about
2400 square meters had to be explored and mapped. Po-
tentially interesting rocks in this area were to be located
and analyzed concerning their geological composition.
Additionally, areas of the ground contained valuable re-
sources, specifically titanium oxides, which could not be
detected visually. All of this had to be done in realistic
lunar network conditions, including a limited bandwidth,

Figure 4. Spot and Husky performing tasks in the ESA
ESRIC Space Resources Challenge. Spot explores the
challenge area and finds potentially interesting rocks to
be analyzed (left), while Husky later on independently an-
alyzes these rocks (right).

artificial delay of all communication and sudden full net-
work blackouts.

For this challenge, we used three commercially available
robots: the Boston Dynamics Spot, the ANYbotics ANY-
mal and the Clearpath Husky using a Universal Robots
UR10. While none of these platforms are space certified,
our approach is inherently robot independent and would
feasibly work on any robot hardware providing the same
base low-level capabilities and some amount of process-
ing power.

Overall, as used in the architecture description, we de-
fined four task types:

• Exploration

• Rock Candidate Checking

• Rock Analysis

• Ground Analysis

Exploration covered the basic task of mapping the chal-
lenge area completely. Exploration tasks where automati-
cally created by the robots using a frontier detection algo-



rithm on a merged challenge map and could be, theoreti-
cally, completed by all robots. Rock Candidate Check-
ing consisted of autonomously taking a context image
of a potentially interesting object to be sent to the op-
erators. These tasks were automatically generated when-
ever a point cloud based rock detection algorithm contin-
uously running on the robots found an object that might
a rock to be analyzed. The pictures taken of these objects
were then checked by an operator to make a final decision
if the object should be geologically analyzed. If marked
thusly, a Rock Analysis task was created. Its execution in-
cluded approaching the rock, removing the top layer with
an angle grinder, then taking a close-up image of this
spot and lastly performing a geochemical measurement
using an x-ray spectrometer. Finally, the Ground Analy-
sis task consisted of taking the same type of geochemical
measurement at a certain ground spot. These tasks were
generated my initial rough sampling of the full challenge
area, with automatic closer sampling tasks being defined
once titanium was found to fully map the resource de-
posit.

The two analysis tasks could, due to the necessary equip-
ment, only be performed by the Husky platform and were
defined as the highest value. The other two tasks, accord-
ingly were shared between Spot and ANYmal. While
Husky would have been able to perform these as well,
it had always more valuable tasks available.

Using our distributed control structure, the robot team
was able to very efficiently explore and map the envi-
ronment. After only about 35 minutes of challenge time,
the area was fully mapped and all rocks found. Through-
out this, Spot and ANYmal explored separate areas, with
Spot covering about two thirds of the full area. This dif-
ference resulted from two factors: Firstly, Spot had a
higher top speed and could thus move significantly faster
over the relatively simple challenge terrain. Secondly, the
area covered by ANYmal included a lunar habitat proto-
type, which caused many potential ”Rock candidates” to
be found which ANYmal had to take context images of.

Throughout the same time, Husky measured about a quar-
ter of the full ground in the challenge and analyzed one
found and confirmed rock.

Overall, we were able to show highly efficient, robust au-
tonomy of a heterogeneous robot team in a challenging
scenario, which allowed us to win the challenge.

3.2. Mars exploration analogue mission

As part of the intelliRISK 2 project, we performed a mars
analogue exploration mission using a robot team in the
Tabernas Desert. We used a very similar basic team and
architecture approach to the lunar challenge described
above, substituting Husky with our own six-legged walk-
ing robot prototype.

The tasks performed and the mechanics to create and
execute them were similar exploration and image tasks,

Figure 5. Mars exploration analogue mission in the
Tabernas Desert in Spain.

which is why they are not presented in detail here, and
we were able to confirm the general results of the Space
Resource Challenges in a different scenario and environ-
ment.

The main focus of this mission, though, was to evaluate
the extendibility of the architecture with more advanced
components. Specifically, instead of our basic global
navigation planner built to find the shortest traversable
path from a robot to a given target point, we developed
a risk aware path planner that actively considers the dan-
gers and advantages of different ground types. Addition-
ally, we extended the low-level robot control system to
adapt to unexpected sensor stimuli with an automatic cau-
tious slowdown to increase robustness. Finally, our basic
frontier detection approach to generate exploration tasks
was replaced with a novelty based learning approach,
that specifically generates exploration targets in areas that
seem more ”interesting”, for example due to them includ-
ing more objects of interest or different terrain than pre-
viously seen.

While all of these individual systems cannot be discussed
here and will be presented in other works, of special note
here is their implementation into the core multi-robot
control architecture. Due to the distributed system used,
we were able to drop-in replace the relevant components,
without any additional modifications needed. Theoreti-
cally, it would even be possible to dynamically swap on-
line during robot operation when needed.

This highlights that our approach is not only feasibly to
create efficient robot collaboration in realistic scenarios,
but is also easily extendable towards different robots and
more complex individual system components.

3.3. European Robotics Hackathon

The final evaluation scenario to be mentioned was the Eu-
ropean Robotics Hackathon ENRICH, which presented a
nuclear power plant emergency scenario. The tasks them-
selves, which included regular and radiation mapping and
manipulation of valves, were again similar to the previ-
ous missions, though performed in the much more con-
strained environment of a nuclear power plant.

We again used Husky, ANYmal and Spot, though the lat-
ter was equipped with a manipulator, and a similar task



Figure 6. Anymal, Husky and Spot in the ENRICH sce-
nario. ANYmal and Husky (left) start initial 3D and ra-
diation mapping. Spot (right) gets ready to turn a valve
using its manipulator.

structure. The primary mission difference was the pres-
ence of network dead zones. Instead of timed loss of con-
nectivity, certain rooms were built to make communica-
tion with the robot impossible while inside.

To combat this, we developed an additional extension that
mapped the connectivity in visited areas. When commu-
nication was necessary, this allowed the robot to return
autonomously to an area where a good connection was
possible. Once again, this extension easily integrated into
the full architecture without modifications needed.

4. CONCLUSIONS AND FUTURE WORKS

We presented a decentralized approach to allow for co-
operation in teams of autonomous robots. Utilizing a
high degree of robot-level intelligence, this approach can
foster efficient collaboration, without requiring a single
planning system to closely understand all robots and their
capabilities. This creates a high degree of modularity and
allows scaling towards both different and bigger robot
teams. We showcased our system in multiple planetary
and terrestrial field test scenarios with different robotic
team members and task structures. Overall, the ease of
adapting our approach to different robots and scenarios
proves its scalability. The implementations usage in mul-
tiple realistic mission tests allows shows its continuing
robustness and thus push towards higher TRLs. Espe-
cially our results in the ESA ESRIC Space Resources
Challenge showcase the strengths of the presented con-
trol structure and its ability to utilize a high degree of
robot autonomy in difficult planetary scenarios.

This provides a significant step towards bringing safe and
robust, but also efficient autonomy into high-risk scenar-
ios. With an increasing effort towards more lunar and
planetary missions in the near future, these more efficient
control architectures are required for long-term operation
of projects such an active lunar base and larger scale min-
ing of resources. Towards this goal, we will continue
increasing the system’s robustness and safety and eval-
uate it in more and increasingly difficult scenarios. This
will bring us closer to our goal of high-TRL autonomous
robot teams.
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